MATH2040 Linear Algebra II

Tutorial 9

November 10, 2016

1 Examples:

Example 1

Let $V = M_{2 \times 2}(\mathbb{R})$ be an inner product space and $T: V \to V$ be a linear operator be defined by $T(A) = A^t$.

- (a) Determine whether T is normal, self-adjoint or neither.
- (b) Find an orthonormal basis of eigenvectors of T for V, and write down the corresponding eigenvalues.

Solution

(a) Let
$$\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 be the standard ordered basis for $M_{2 \times 2}(\mathbb{R})$. Then
$$[T]_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

And it is obvious that $[T]_{\alpha}$ is self-adjoint.

(b) Let $f(t) = \det([T]_{\alpha} - tI)$ be the characteristic polynomial. Then the eigenvalues are $\lambda_1 = 1$ with multiplicity $m_1 = 3$ and $\lambda_2 = -1$ with multiplicity $m_2 = 1$.

For
$$\lambda_1 = 1$$
, $N([T]_{\alpha} - I) = N\left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}\right)$ span $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 \\ 0 \end{pmatrix}\right\}$
For $\lambda_2 = -1$, $N([T]_{\alpha} + I) = N\left(\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}\right)$ span $\left\{\begin{pmatrix} 0 & 1 \\ -1 \\ 0 \end{pmatrix}\right\}$.

So the orthonormal eigenbasis

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \right\}.$$

Example 2

Let T be a linear operator on a complex inner product space V with an adjoint T^* . Prove the following results:

- (a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
- (b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then $T = T_0$ (zero transformation).
- (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then $T = T^*$.

Solution

(a) Note

$$\langle T(x), x \rangle = \langle x, T^*(x) \rangle = \langle x, T(x) \rangle$$

since T is self-adjoint. So

$$\langle T(x), x \rangle = \overline{\langle T(x), x \rangle}$$

therefore, $\langle T(x), x \rangle$ is real for all $x \in V$.

(b) We first substitute $x = x + y \in V$ into the relation $\langle T(x), x \rangle = 0$, i.e.

$$0 = \langle T(x+y), x+y \rangle$$

= $\langle T(x) + T(y), x+y \rangle$
= $\langle T(x), x \rangle + \langle T(x), y \rangle + \langle T(y), x \rangle + \langle T(y), y \rangle$
= $\langle T(x), y \rangle + \langle T(y), x \rangle$

So we have $\langle T(x), y \rangle = -\langle T(y), x \rangle$.

Similarly, we substitute $x = x + iy \in V$ into the same relation, we have

$$0 = \langle T(x+iy), x+iy \rangle$$

= $\langle T(x) + T(iy), x+iy \rangle$
= $\langle T(x), x \rangle + \langle T(x), iy \rangle + \langle T(iy), x \rangle + \langle T(iy), iy \rangle$
= $\langle T(x), iy \rangle + \langle T(iy), x \rangle$

Then, $-i\langle T(x), y \rangle = -i\langle T(y), x \rangle$.

Therefore, $\langle T(x), y \rangle = -\langle T(y), x \rangle = -\langle T(x), y \rangle$ for all $x, y \in V$. We can conclude that T(x) = 0 for all $x \in V$, and so $T = T_0$.

(c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then

$$\langle T(x), x \rangle = \overline{\langle T(x), x \rangle} = \overline{\langle x, T^*(x) \rangle} = \langle T^*(x), x \rangle$$

which is the same as $\langle (T - T^*)(x), x \rangle = 0$ for all $x \in V$. By the result of (b), we have the desired result.

Example 3

An $n \times n$ real matrix A is said to be Gramian matrix if there exists a real matrix B such that $A = B^t B$. Prove that A is Gramian matrix if and only if A is symmetric and all of its eigenvalues are non-negative.

Solution

" \Rightarrow " Suppose A is Gramian matrix, then A is symmetric since $A^t = (B^t B)^t = B^t B = A$.

Let λ be an eigenvalue of A with x be the corresponding normalized eigenvector, then

$$\lambda = \lambda \langle x, x \rangle = \langle Ax, x \rangle = \langle B^t Bx, x \rangle = \langle Bx, Bx \rangle \ge 0$$

since for real matrix, $B^t = B^*$.

" \Leftarrow " Suppose A is symmetric and all of its eigenvalues are non-negative. As A is symmetric, then there exists an orthonormal basis $\beta = \{v_1, v_2, \ldots, v_n\}$ such that $[L_A]_\beta$ is diagonal with the *i*-th diagonal entry is the *i*-th eigenvalue λ_i .

Let D be a diagonal matrix with *i*-th diagonal entry to be $\sqrt{\lambda_i}$, which is well-defined because all the eigenvalues are non-negative. Let α be the standard ordereed basis and introduce $[I]^{\beta}_{\alpha}$ as the change of coordinate matrix, then A and $[L_A]_{\beta}$ can be related as the following:

$$A = [I]^{\alpha}_{\beta} [L_A]_{\beta} [I]^{\beta}_{\alpha}.$$

Since $D^2 = [L_A]_\beta$, so

$$A = [I]^{\alpha}_{\beta}[L_A]_{\beta}[I]^{\beta}_{\alpha} = ([I]^{\alpha}_{\beta}D)(D[I]^{\beta}_{\alpha}).$$

Note, $([I]_{\beta}^{\alpha})^t [I]_{\beta}^{\alpha} = I$ since $\{v_1, v_2, \dots, v_n\}$ are orthonormal basis, so $([I]_{\beta}^{\alpha})^t = ([I]_{\beta}^{\alpha})^{-1} = [I]_{\alpha}^{\beta}$.

In conclusion, we can let $B = D[I]^{\beta}_{\alpha}$, then $A = ([I]^{\alpha}_{\beta}D)(D[I]^{\beta}_{\alpha}) = B^{t}B$ is a Gramian matrix.

2 Exercises:

Question 1 (Section 6.4 Q2(c):

Let $V = \mathbb{C}^2$ be an inner product space and $T: V \to V$ be a linear operator be defined by T(a, b) = (2a+ib, a+2b).

- (a) Determine whether T is normal, self-adjoint or neither.
- (b) Find an orthonormal basis of eigenvectors of T for V, and write down the corresponding eigenvalues.

Question 2 (Section 6.4 Q10):

Let T be a self-adjoint operator on a finite-dimensional inner product space V.

- (a) Prove that for all $x \in V$, $||T(x) + \pm ix||^2 = ||T(x)||^2 + ||x||^2$.
- (b) Prove that T iI is invertible. (that is, to show that T iI is one-to-one and onto)
- (c) Prove that $[(T iI)^{-1}]^* = (T + iI)^{-1}$.

Question 3 (Section 6.4 Q12):

Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence, prove that T is self-adjoint.

Solution

(Please refer to the practice problem set 9.)