MATH2040 Linear Algebra II

Tutorial 9

November 10, 2016

1 Examples:

Example 1

Let $V=M_{2 \times 2}(\mathbb{R})$ be an inner product space and $T: V \rightarrow V$ be a linear operator be defined by $T(A)=A^{t}$.
(a) Determine whether T is normal, self-adjoint or neither.
(b) Find an orthonormal basis of eigenvectors of T for V, and write down the corresponding eigenvalues.

Solution

(a) Let $\alpha=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be the standard ordered basis for $M_{2 \times 2}(\mathbb{R})$. Then

$$
[T]_{\alpha}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

And it is obvious that $[T]_{\alpha}$ is self-adjoint.
(b) Let $f(t)=\operatorname{det}\left([T]_{\alpha}-t I\right)$ be the characteristic polynomial. Then the eigenvalues are $\lambda_{1}=1$ with multiplicity $m_{1}=3$ and $\lambda_{2}=-1$ with multiplicity $m_{2}=1$.

$$
\begin{aligned}
& \text { For } \lambda_{1}=1, N\left([T]_{\alpha}-I\right)=N\left(\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \text { span }\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\right\} . \\
& \text { For } \lambda_{2}=-1, N\left([T]_{\alpha}+I\right)=N\left(\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)\right) \operatorname{span}\left\{\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)\right\} .
\end{aligned}
$$

So the orthonormal eigenbasis

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} .
$$

Example 2

Let T be a linear operator on a complex inner product space V with an adjoint T^{*}. Prove the following results:
(a) If T is self-adjoint, then $\langle T(x), x\rangle$ is real for all $x \in V$.
(b) If T satisfies $\langle T(x), x\rangle=0$ for all $x \in V$, then $T=T_{0}$ (zero transformation).
(c) If $\langle T(x), x\rangle$ is real for all $x \in V$, then $T=T^{*}$.

Solution

(a) Note

$$
\langle T(x), x\rangle=\left\langle x, T^{*}(x)\right\rangle=\langle x, T(x)\rangle
$$

since T is self-adjoint. So

$$
\langle T(x), x\rangle=\overline{\langle T(x), x\rangle}
$$

therefore, $\langle T(x), x\rangle$ is real for all $x \in V$.
(b) We first substitute $x=x+y \in V$ into the relation $\langle T(x), x\rangle=0$, i.e.

$$
\begin{aligned}
0 & =\langle T(x+y), x+y\rangle \\
& =\langle T(x)+T(y), x+y\rangle \\
& =\langle T(x), x\rangle+\langle T(x), y\rangle+\langle T(y), x\rangle+\langle T(y), y\rangle \\
& =\langle T(x), y\rangle+\langle T(y), x\rangle
\end{aligned}
$$

So we have $\langle T(x), y\rangle=-\langle T(y), x\rangle$.
Similarly, we substitute $x=x+i y \in V$ into the same relation, we have

$$
\begin{aligned}
0 & =\langle T(x+i y), x+i y\rangle \\
& =\langle T(x)+T(i y), x+i y\rangle \\
& =\langle T(x), x\rangle+\langle T(x), i y\rangle+\langle T(i y), x\rangle+\langle T(i y), i y\rangle \\
& =\langle T(x), i y\rangle+\langle T(i y), x\rangle
\end{aligned}
$$

Then, $-i\langle T(x), y\rangle=-i\langle T(y), x\rangle$.
Therefore, $\langle T(x), y\rangle=-\langle T(y), x\rangle=-\langle T(x), y\rangle$ for all $x, y \in V$. We can conclude that $T(x)=0$ for all $x \in V$, and so $T=T_{0}$.
(c) If $\langle T(x), x\rangle$ is real for all $x \in V$, then

$$
\langle T(x), x\rangle=\overline{\langle T(x), x\rangle}=\overline{\left\langle x, T^{*}(x)\right\rangle}=\left\langle T^{*}(x), x\right\rangle
$$

which is the same as $\left\langle\left(T-T^{*}\right)(x), x\right\rangle=0$ for all $x \in V$. By the result of (b), we have the desired result.

Example 3

An $n \times n$ real matrix A is said to be Gramian matrix if there exists a real matrix B such that $A=B^{t} B$. Prove that A is Gramian matrix if and only if A is symmetric and all of its eigenvalues are non-negative.

Solution

$" \Rightarrow "$ Suppose A is Gramian matrix, then A is symmetric since $A^{t}=\left(B^{t} B\right)^{t}=B^{t} B=A$.
Let λ be an eigenvalue of A with x be the corresponding normalized eigenvector, then

$$
\lambda=\lambda\langle x, x\rangle=\langle A x, x\rangle=\left\langle B^{t} B x, x\right\rangle=\langle B x, B x\rangle \geq 0
$$

since for real matrix, $B^{t}=B^{*}$.
$" \Leftarrow "$ Suppose A is symmetric and all of its eigenvalues are non-negative. As A is symmetric, then there exists an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $\left[L_{A}\right]_{\beta}$ is diagonal with the i-th diagonal entry is the i-th eigenvalue λ_{i}.

Let D be a diagonal matrix with i-th diagonal entry to be $\sqrt{\lambda_{i}}$, which is well-defined because all the eigenvalues are non-negative. Let α be the standard ordereed basis and introduce $[I]_{\alpha}^{\beta}$ as the change of coordinate matrix, then A and $\left[L_{A}\right]_{\beta}$ can be related as the following:

$$
A=[I]_{\beta}^{\alpha}\left[L_{A}\right]_{\beta}[I]_{\alpha}^{\beta}
$$

Since $D^{2}=\left[L_{A}\right]_{\beta}$, so

$$
A=[I]_{\beta}^{\alpha}\left[L_{A}\right]_{\beta}[I]_{\alpha}^{\beta}=\left([I]_{\beta}^{\alpha} D\right)\left(D[I]_{\alpha}^{\beta}\right)
$$

Note, $\left([I]_{\beta}^{\alpha}\right)^{t}[I]_{\beta}^{\alpha}=I$ since $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are orthonormal basis, so $\left([I]_{\beta}^{\alpha}\right)^{t}=\left([I]_{\beta}^{\alpha}\right)^{-1}=[I]_{\alpha}^{\beta}$.
In conclusion, we can let $B=D[I]_{\alpha}^{\beta}$, then $A=\left([I]_{\beta}^{\alpha} D\right)\left(D[I]_{\alpha}^{\beta}\right)=B^{t} B$ is a Gramian matrix.

2 Exercises:

Question 1 (Section 6.4 Q2(c):
Let $V=\mathbb{C}^{2}$ be an inner product space and $T: V \rightarrow V$ be a linear operator be defined by $T(a, b)=(2 a+i b, a+2 b)$.
(a) Determine whether T is normal, self-adjoint or neither.
(b) Find an orthonormal basis of eigenvectors of T for V, and write down the corresponding eigenvalues.

Question 2 (Section 6.4 Q10):
Let T be a self-adjoint operator on a finite-dimensional inner product space V.
(a) Prove that for all $x \in V,\|T(x)+ \pm i x\|^{2}=\|T(x)\|^{2}+\|x\|^{2}$.
(b) Prove that $T-i I$ is invertible. (that is, to show that $T-i I$ is one-to-one and onto)
(c) Prove that $\left[(T-i I)^{-1}\right]^{*}=(T+i I)^{-1}$.

Question 3 (Section 6.4 Q12):
Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence, prove that T is self-adjoint.

Solution

(Please refer to the practice problem set 9.)

